民航网
民航网 - 民航新闻 - 飞行中自然定律和力对飞机性能特性的影响
新闻搜索
飞行中自然定律和力对飞机性能特性的影响
来源:互联网  编辑:民航网CAAC.com.cn  日期:2014-05-31

  在17世纪,哲学家和数学家 牛顿提出了三个基本的运动定律。他在这样做的时候脑子里确定无疑的没有飞机这个概念,但是几乎所有已知的运动都可以回到这三个定律。这些定律以牛顿的名字命名如下:

  牛顿第一定律:一个静止的物体有维持其静止状态的特性,运动中的物体有维持其原有速度和方向的特性。简而言之,本质上,一个物体一直保持其运动状态知道有外界力量改变他。停机坪上的静止飞机会一直保持静止除非施加一个足够强的克服其惯性的力。然而,一旦其开始运动,他的惯性会让他保持运动,克服施加于飞机上的各种其他力量。这些力量或推动其运动,或减慢其速度,或改变他的方向。

  牛顿第二定律:当一个物体收到一个恒定力的作用时,其加速度和物体的质量成反比,和物体的所施加的力成正比。这里所涉及的就是克服牛顿第一定律的惯性的因素。其包含方向和速度的改变,有两层含义:从静止到运动(正加速度)和从运动到停止(负加速度或者减速)。

  牛顿第三定律:无论何时一个物体对另一个物体施加力量,那么另一个物体也对这个物体施加力量,这个力的大小是相等的,而方向是相反的。开火时枪的反作用力是牛顿第三定律的形象化例子。游泳冠军在折回时对游泳池壁施加反作用力,或者婴儿学步-都会失败,但是现象都表现了这个定律。飞机上,螺旋桨转动向后推动空气,所以,空气向相反的方向推螺旋桨-飞机前进。在喷气式飞机上,引擎向后推动热空气气流,作用于引擎的反向等大小的作用力推动引擎,使得飞机前进。所有交通工具的运动都形象的演示了牛顿第三运动定律。

  马格努斯效应

  通过观察气流中旋转的圆柱可以很好的解释升力的原因。靠近圆柱的局部速率由气流速度和圆柱的旋转速率共同决定,距离圆柱越远其速率越低。对于圆柱,顶部表面的旋转方向和气流方向一致,顶部的局部速率高,底部的速率低。

  如图2-2所示,在A点,气流线在分支点分开,这里有个停滞点;一些空气向上,一些空气向下。另一个停滞点在B点,两个气流汇合,局部速度相同。现在圆柱面前部有了升流,后面有降流。表面局部速度的差别说明压力的不同,顶部压力比底部低。低压区产生向上的力称为“马格努斯效应”。这种机械降低的循环演示了旋转和升力之间的关系。

  正迎角的机翼产生的气流使得机翼尾部的停滞点称为尾部边缘的尾巴,而前面的停滞点前导机翼边缘的下方。

  压力的伯努利原理

  牛顿发表其定律的半个世纪之后,一个瑞士数学家伯努利先生解释了运动流体(液体或者气体)的压力是如何随其运动速度而变化的。特别的,他说道运动或者流动的速度增加会导致流体压力的降低。这就是空气通过飞机机翼上曲面所发生的。

  可以使用普通管子里的水流来作个模拟。在恒定直径的管子中流动的水对管壁施加一致的压力;但是如果管子的一段直径增加或者降低,在那点水的压力是肯定要变化的。假设管子收缩,那么就会压缩这个区域里的水流。假设在一样的时间流过收缩部分管子的水量和管子收缩前是一样的,那么这个点的水流速度必定增加。

  因此,如果管子的一部分收缩,它不仅增加流速,还降低了所在点的压力。流线型的固体(机翼)在管子中同一点也会得到类似的结果。这个一样的原理是空速测试和机翼产生升力能力分析的基础。

  伯努利定理的实践应用是文氏管。文氏管的入口比喉部直径大,出口部分的直径也和入口一样大。在喉部,气流速度增加,压力降低;在出口处气流速度降低,压力增加。


我有话说

用户 密码

主办单位::@民航网 国盛泰富航空基金会   &copy2012-2014 CAAC.com.cn   粤ICP备13020029号  企业认证 信息纠错 自助登记 新闻发布 广告刊登